Case Study: High-Quality Video to GIF Conversion¶
This case study demonstrates how to use the GitHub Copilot SDK Pipe with Minimax 2.1 to perform professional-grade video processing: accelerating a video by 1.4x and converting it into a high-quality GIF under 20MB.
đĨ Recording¶

Scenario: The user uploaded a 38MB
.movrecording and requested a 1.4x speed increase, 1280px width, and a file size limit of 20MB. The model automatically formulated, executed, and verified a two-pass FFmpeg workflow.
đ ī¸ Implementation¶
- Plugin Type: Pipe (GitHub Copilot SDK)
- Base Model: Minimax 2.1
- Key Capabilities:
- System Tool Access: Automatically detects and invokes
ffmpegwithin the container. - Two-Pass Optimization: 1. Pass 1: Analyzes all frames to generate a custom 256-color palette (
palettegen). 2. Pass 2: Applies the palette for superior quantization and dithering (paletteuse). - Precision Parameters: Implements 1.4x PTS scaling, Lanczos scaling, and 20fps rate control.
đŦ Conversation Highlights¶
đĨ Import Conversation¶
You can download the raw chat data and import it into your Open WebUI to see how the model debugs and optimizes the FFmpeg parameters: Download Chat JSON
How to Import? In Open WebUI, click your User Avatar (bottom of left sidebar) -> Settings -> Data -> Import Chats, then select the downloaded file.
1. Processing Requirements¶
The User provided an input file and specific parameters:
- Speed: 1.4x (setpts=PTS/1.4)
- Resolution: 1280px width, auto height
- Optimization: Must use palette generation technology
- Constraint: File size < 20MB
2. Analysis Execution¶
Minimax 2.1 generated and executed the following core logic:
# Pass 1: Generate optimal palette
ffmpeg -i input.mov -vf "fps=20,scale=1280:-1:flags=lanczos,setpts=PTS/1.4,palettegen" palette.png
# Pass 2: Generate final high-quality GIF
ffmpeg -i input.mov -i palette.png -lavfi "[0:v]fps=20,scale=1280:-1:flags=lanczos,setpts=PTS/1.4[v];[v][1:v]paletteuse" output.gif
3. Result Summary¶
| Metric | Original Video | Processed GIF | Status |
|---|---|---|---|
| File Size | 38 MB | 14 MB | â Success |
| Resolution | 3024x1898 | 1280x803 | â Smooth |
| Speed | 1.0x | 1.4x | â Accurate |
| Color Quality | N/A | Optimal 256-color | ⨠Crystal Clear |
đĄ Why This Case Matters¶
Standard LLMs can only "tell you" how to use FFmpeg. However, a Pipe powered by the GitHub Copilot SDK can:
- Interpret complex multimedia processing parameters.
- Access raw files within the filesystem.
- Execute resource-intensive binary tool tasks.
- Validate that the output (size, resolution) meets the user's hard constraints.