OpenWebUI Plugin Development Guide¶
This guide consolidates official documentation, SDK details, and best practices to provide a systematic tutorial for developers, from beginner to expert.
đ Table of Contents¶
- Quick Start
- Core Concepts & SDK Details
- Deep Dive into Plugin Types
- Advanced Development Patterns
- Best Practices & Design Principles
- Troubleshooting
1. Quick Start¶
1.1 What are OpenWebUI Plugins?¶
OpenWebUI Plugins (officially called "Functions") are the primary way to extend the platform's capabilities. Running in a backend Python environment, they allow you to:
- Integrate New Models: Connect to Claude, Gemini, or custom RAGs via Pipes
- Enhance Interaction: Add buttons (e.g., "Export", "Generate Chart") next to messages via Actions
- Intervene in Processes: Modify data before requests or after responses via Filters
1.2 Your First Plugin (Hello World)¶
Save the following code as hello.py and upload it to the Functions panel in OpenWebUI:
"""
title: Hello World Action
author: Demo
version: 1.0.0
"""
from pydantic import BaseModel, Field
from typing import Optional
class Action:
class Valves(BaseModel):
greeting: str = Field(default="Hello", description="Greeting message")
def __init__(self):
self.valves = self.Valves()
async def action(
self,
body: dict,
__event_emitter__=None,
__user__=None
) -> Optional[dict]:
user_name = __user__.get("name", "Friend") if __user__ else "Friend"
if __event_emitter__:
await __event_emitter__({
"type": "notification",
"data": {"type": "success", "content": f"{self.valves.greeting}, {user_name}!"}
})
return body
2. Core Concepts & SDK Details¶
2.1 â ī¸ Important: Sync vs Async¶
OpenWebUI plugins run within an asyncio event loop.
Critical
- Principle: All I/O operations (database, file, network) must be non-blocking
- Pitfall: Calling synchronous methods directly (e.g.,
time.sleep,requests.get) will freeze the entire server - Solution: Wrap synchronous calls using
await asyncio.to_thread(sync_func, ...)
2.2 Core Parameters¶
All plugin methods (inlet, outlet, pipe, action) support injecting the following special parameters:
| Parameter | Type | Description |
|---|---|---|
body | dict | Core Data. Contains request info like messages, model, stream |
__user__ | dict | Current User. Contains id, name, role, valves (user config), etc. |
__metadata__ | dict | Metadata. Contains chat_id, message_id. The variables field holds preset variables |
__request__ | Request | FastAPI Request Object. Access app.state for cross-plugin communication |
__event_emitter__ | func | One-way Notification. Used to send Toast notifications or status bar updates |
__event_call__ | func | Two-way Interaction. Used to execute JS code, show confirmation dialogs, or input boxes |
2.3 Configuration System (Valves)¶
Valves: Global admin configurationUserValves: User-level configuration (higher priority, overrides global)
class Filter:
class Valves(BaseModel):
API_KEY: str = Field(default="", description="Global API Key")
class UserValves(BaseModel):
API_KEY: str = Field(default="", description="User Private API Key")
def inlet(self, body, __user__):
# Prioritize user's Key
user_valves = __user__.get("valves", self.UserValves())
api_key = user_valves.API_KEY or self.valves.API_KEY
3. Deep Dive into Plugin Types¶
3.1 Action¶
Role: Adds buttons below messages that trigger upon user click.
Advanced Usage: Execute JavaScript on Frontend¶
import base64
async def action(self, body, __event_call__):
# 1. Generate content on backend
content = "Hello OpenWebUI".encode()
b64 = base64.b64encode(content).decode()
# 2. Send JS to frontend for execution
js = f"""
const blob = new Blob([atob('{b64}')], {{type: 'text/plain'}});
const a = document.createElement('a');
a.href = URL.createObjectURL(blob);
a.download = 'hello.txt';
a.click();
"""
await __event_call__({"type": "execute", "data": {"code": js}})
3.2 Filter¶
Role: Middleware that intercepts and modifies requests/responses.
inlet: Before request. Used for injecting context, modifying model parametersoutlet: After response. Used for formatting output, loggingstream: During streaming. Used for real-time sensitive word filtering
Example: Injecting Environment Variables¶
async def inlet(self, body, __metadata__):
vars = __metadata__.get("variables", {})
context = f"Current Time: {vars.get('{{CURRENT_DATETIME}}')}"
# Inject into System Prompt or first message
if body.get("messages"):
body["messages"][0]["content"] += f"\n\n{context}"
return body
3.3 Pipe¶
Role: Custom Model/Agent.
Example: Simple OpenAI Wrapper¶
import requests
class Pipe:
def pipes(self):
return [{"id": "my-gpt", "name": "My GPT Wrapper"}]
def pipe(self, body):
# Modify body here, e.g., force add prompt
headers = {"Authorization": f"Bearer {self.valves.API_KEY}"}
r = requests.post(
"https://api.openai.com/v1/chat/completions",
json=body,
headers=headers,
stream=True
)
return r.iter_lines()
4. Advanced Development Patterns¶
4.1 Pipe & Filter Collaboration¶
Use __request__.app.state to share data between plugins:
- Pipe:
__request__.app.state.search_results = [...] - Filter (Outlet): Read
search_resultsand format them as citation links
4.2 Async Background Tasks¶
Execute time-consuming operations without blocking the user response:
import asyncio
async def outlet(self, body, __metadata__):
asyncio.create_task(self.background_job(__metadata__["chat_id"]))
return body
async def background_job(self, chat_id):
# Execute time-consuming operation...
pass
4.3 Calling Built-in LLM¶
from open_webui.utils.chat import generate_chat_completion
from open_webui.models.users import Users
# Get user object
user_obj = Users.get_user_by_id(user_id)
# Build LLM request
llm_payload = {
"model": "model-id",
"messages": [
{"role": "system", "content": "System prompt"},
{"role": "user", "content": "User input"}
],
"temperature": 0.7,
"stream": False
}
# Call LLM
llm_response = await generate_chat_completion(
__request__, llm_payload, user_obj
)
4.4 JS Render to Markdown (Data URL Embedding)¶
For scenarios requiring complex frontend rendering (e.g., AntV charts, Mermaid diagrams) but wanting persistent pure Markdown output, use the Data URL embedding pattern:
Workflow¶
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
â 1. Python Action â
â âââ Analyze message content â
â âââ Call LLM to generate structured data (optional) â
â âââ Send JS code to frontend via __event_call__ â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¤
â 2. Browser JS (via __event_call__) â
â âââ Dynamically load visualization library â
â âââ Render SVG/Canvas offscreen â
â âââ Export to Base64 Data URL via toDataURL() â
â âââ Update message content via REST API â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¤
â 3. Markdown Rendering â
â âââ Display  â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
Python Side (Send JS for Execution)¶
async def action(self, body, __event_call__, __metadata__, ...):
chat_id = self._extract_chat_id(body, __metadata__)
message_id = self._extract_message_id(body, __metadata__)
# Generate JS code
js_code = self._generate_js_code(
chat_id=chat_id,
message_id=message_id,
data=processed_data,
)
# Execute JS
if __event_call__:
await __event_call__({
"type": "execute",
"data": {"code": js_code}
})
JavaScript Side (Render and Write-back)¶
(async function() {
// 1. Load visualization library
if (typeof VisualizationLib === 'undefined') {
await new Promise((resolve, reject) => {
const script = document.createElement('script');
script.src = 'https://cdn.example.com/lib.min.js';
script.onload = resolve;
script.onerror = reject;
document.head.appendChild(script);
});
}
// 2. Create offscreen container
const container = document.createElement('div');
container.style.cssText = 'position:absolute;left:-9999px;';
document.body.appendChild(container);
// 3. Render visualization
const instance = new VisualizationLib({ container });
instance.render(data);
// 4. Export to Data URL
const dataUrl = await instance.toDataURL({ type: 'svg', embedResources: true });
// 5. Cleanup
instance.destroy();
document.body.removeChild(container);
// 6. Generate Markdown image
const markdownImage = ``;
// 7. Update message via API
const token = localStorage.getItem("token");
await fetch(`/api/v1/chats/${chatId}/messages/${messageId}/event`, {
method: "POST",
headers: {
"Content-Type": "application/json",
"Authorization": `Bearer ${token}`
},
body: JSON.stringify({
type: "chat:message",
data: { content: originalContent + "\n\n" + markdownImage }
})
});
})();
Benefits¶
- Pure Markdown Output: Standard Markdown image syntax, no HTML code blocks
- Self-Contained: Images embedded as Base64 Data URL, no external dependencies
- Persistent: Via API write-back, images remain after page reload
- Cross-Platform: Works on any client supporting Markdown images
HTML Injection vs JS Render to Markdown¶
| Feature | HTML Injection | JS Render + Markdown |
|---|---|---|
| Output Format | HTML code block | Markdown image |
| Interactivity | â Buttons, animations | â Static image |
| External Deps | Requires JS libraries | None (self-contained) |
| Persistence | Depends on browser | â Permanent |
| File Export | Needs special handling | â Direct export |
| Use Case | Interactive content | Infographics, chart snapshots |
Reference Implementations¶
plugins/actions/infographic/infographic.py- Production-ready implementation using AntV + Data URL
5. Best Practices & Design Principles¶
5.1 Naming & Positioning¶
- Short & Punchy: e.g., "FlashCard", "DeepRead". Avoid generic terms like "Text Analysis Assistant"
- Complementary: Don't reinvent the wheel; clarify what specific problem your plugin solves
5.2 User Experience (UX)¶
- Timely Feedback: Send a
notification("Generating...") before time-consuming operations - Visual Appeal: When Action outputs HTML, use modern CSS (rounded corners, shadows, gradients)
- Smart Guidance: If text is too short, prompt the user: "Suggest entering more content for better results"
5.3 Error Handling¶
Never fail silently
Always catch exceptions and inform the user via __event_emitter__.
try:
# Business logic
pass
except Exception as e:
await __event_emitter__({
"type": "notification",
"data": {"type": "error", "content": f"Processing failed: {str(e)}"}
})
6. Troubleshooting¶
HTML not showing?
Ensure it's wrapped in a ```html ... ``` code block.
Database error?
Check if you called synchronous DB methods directly in an async function; use asyncio.to_thread.
Parameters not working?
Check if Valves are defined correctly and if they are being overridden by UserValves.
Plugin not loading?
- Check for syntax errors in the Python file
- Verify the metadata docstring is correctly formatted
- Check OpenWebUI logs for error messages