Skip to content

OpenWebUI Plugin Development Guide

This guide consolidates official documentation, SDK details, and best practices to provide a systematic tutorial for developers, from beginner to expert.


📚 Table of Contents

  1. Quick Start
  2. Core Concepts & SDK Details
  3. Deep Dive into Plugin Types
  4. Advanced Development Patterns
  5. Best Practices & Design Principles
  6. Troubleshooting

1. Quick Start

1.1 What are OpenWebUI Plugins?

OpenWebUI Plugins (officially called "Functions") are the primary way to extend the platform's capabilities. Running in a backend Python environment, they allow you to:

  • Integrate New Models: Connect to Claude, Gemini, or custom RAGs via Pipes
  • Enhance Interaction: Add buttons (e.g., "Export", "Generate Chart") next to messages via Actions
  • Intervene in Processes: Modify data before requests or after responses via Filters

1.2 Your First Plugin (Hello World)

Save the following code as hello.py and upload it to the Functions panel in OpenWebUI:

"""
title: Hello World Action
author: Demo
version: 1.0.0
"""

from pydantic import BaseModel, Field
from typing import Optional

class Action:
    class Valves(BaseModel):
        greeting: str = Field(default="Hello", description="Greeting message")

    def __init__(self):
        self.valves = self.Valves()

    async def action(
        self,
        body: dict,
        __event_emitter__=None,
        __user__=None
    ) -> Optional[dict]:
        user_name = __user__.get("name", "Friend") if __user__ else "Friend"

        if __event_emitter__:
            await __event_emitter__({
                "type": "notification",
                "data": {"type": "success", "content": f"{self.valves.greeting}, {user_name}!"}
            })
        return body

2. Core Concepts & SDK Details

2.1 âš ī¸ Important: Sync vs Async

OpenWebUI plugins run within an asyncio event loop.

Critical

  • Principle: All I/O operations (database, file, network) must be non-blocking
  • Pitfall: Calling synchronous methods directly (e.g., time.sleep, requests.get) will freeze the entire server
  • Solution: Wrap synchronous calls using await asyncio.to_thread(sync_func, ...)

2.2 Core Parameters

All plugin methods (inlet, outlet, pipe, action) support injecting the following special parameters:

Parameter Type Description
body dict Core Data. Contains request info like messages, model, stream
__user__ dict Current User. Contains id, name, role, valves (user config), etc.
__metadata__ dict Metadata. Contains chat_id, message_id. The variables field holds preset variables
__request__ Request FastAPI Request Object. Access app.state for cross-plugin communication
__event_emitter__ func One-way Notification. Used to send Toast notifications or status bar updates
__event_call__ func Two-way Interaction. Used to execute JS code, show confirmation dialogs, or input boxes

2.3 Configuration System (Valves)

  • Valves: Global admin configuration
  • UserValves: User-level configuration (higher priority, overrides global)
class Filter:
    class Valves(BaseModel):
        API_KEY: str = Field(default="", description="Global API Key")

    class UserValves(BaseModel):
        API_KEY: str = Field(default="", description="User Private API Key")

    def inlet(self, body, __user__):
        # Prioritize user's Key
        user_valves = __user__.get("valves", self.UserValves())
        api_key = user_valves.API_KEY or self.valves.API_KEY

3. Deep Dive into Plugin Types

3.1 Action

Role: Adds buttons below messages that trigger upon user click.

Advanced Usage: Execute JavaScript on Frontend

import base64

async def action(self, body, __event_call__):
    # 1. Generate content on backend
    content = "Hello OpenWebUI".encode()
    b64 = base64.b64encode(content).decode()

    # 2. Send JS to frontend for execution
    js = f"""
    const blob = new Blob([atob('{b64}')], {{type: 'text/plain'}});
    const a = document.createElement('a');
    a.href = URL.createObjectURL(blob);
    a.download = 'hello.txt';
    a.click();
    """
    await __event_call__({"type": "execute", "data": {"code": js}})

3.2 Filter

Role: Middleware that intercepts and modifies requests/responses.

  • inlet: Before request. Used for injecting context, modifying model parameters
  • outlet: After response. Used for formatting output, logging
  • stream: During streaming. Used for real-time sensitive word filtering

Example: Injecting Environment Variables

async def inlet(self, body, __metadata__):
    vars = __metadata__.get("variables", {})
    context = f"Current Time: {vars.get('{{CURRENT_DATETIME}}')}"

    # Inject into System Prompt or first message
    if body.get("messages"):
        body["messages"][0]["content"] += f"\n\n{context}"
    return body

3.3 Pipe

Role: Custom Model/Agent.

Example: Simple OpenAI Wrapper

import requests

class Pipe:
    def pipes(self):
        return [{"id": "my-gpt", "name": "My GPT Wrapper"}]

    def pipe(self, body):
        # Modify body here, e.g., force add prompt
        headers = {"Authorization": f"Bearer {self.valves.API_KEY}"}
        r = requests.post(
            "https://api.openai.com/v1/chat/completions",
            json=body,
            headers=headers,
            stream=True
        )
        return r.iter_lines()

4. Advanced Development Patterns

4.1 Pipe & Filter Collaboration

Use __request__.app.state to share data between plugins:

  • Pipe: __request__.app.state.search_results = [...]
  • Filter (Outlet): Read search_results and format them as citation links

4.2 Async Background Tasks

Execute time-consuming operations without blocking the user response:

import asyncio

async def outlet(self, body, __metadata__):
    asyncio.create_task(self.background_job(__metadata__["chat_id"]))
    return body

async def background_job(self, chat_id):
    # Execute time-consuming operation...
    pass

4.3 Calling Built-in LLM

from open_webui.utils.chat import generate_chat_completion
from open_webui.models.users import Users

# Get user object
user_obj = Users.get_user_by_id(user_id)

# Build LLM request
llm_payload = {
    "model": "model-id",
    "messages": [
        {"role": "system", "content": "System prompt"},
        {"role": "user", "content": "User input"}
    ],
    "temperature": 0.7,
    "stream": False
}

# Call LLM
llm_response = await generate_chat_completion(
    __request__, llm_payload, user_obj
)

4.4 JS Render to Markdown (Data URL Embedding)

For scenarios requiring complex frontend rendering (e.g., AntV charts, Mermaid diagrams) but wanting persistent pure Markdown output, use the Data URL embedding pattern:

Workflow

┌──────────────────────────────────────────────────────────────┐
│  1. Python Action                                             │
│     ├── Analyze message content                               │
│     ├── Call LLM to generate structured data (optional)       │
│     └── Send JS code to frontend via __event_call__           │
├──────────────────────────────────────────────────────────────┤
│  2. Browser JS (via __event_call__)                           │
│     ├── Dynamically load visualization library                │
│     ├── Render SVG/Canvas offscreen                           │
│     ├── Export to Base64 Data URL via toDataURL()             │
│     └── Update message content via REST API                   │
├──────────────────────────────────────────────────────────────┤
│  3. Markdown Rendering                                        │
│     └── Display ![description](data:image/svg+xml;base64,...) │
└──────────────────────────────────────────────────────────────┘

Python Side (Send JS for Execution)

async def action(self, body, __event_call__, __metadata__, ...):
    chat_id = self._extract_chat_id(body, __metadata__)
    message_id = self._extract_message_id(body, __metadata__)

    # Generate JS code
    js_code = self._generate_js_code(
        chat_id=chat_id,
        message_id=message_id,
        data=processed_data,
    )

    # Execute JS
    if __event_call__:
        await __event_call__({
            "type": "execute",
            "data": {"code": js_code}
        })

JavaScript Side (Render and Write-back)

(async function() {
    // 1. Load visualization library
    if (typeof VisualizationLib === 'undefined') {
        await new Promise((resolve, reject) => {
            const script = document.createElement('script');
            script.src = 'https://cdn.example.com/lib.min.js';
            script.onload = resolve;
            script.onerror = reject;
            document.head.appendChild(script);
        });
    }

    // 2. Create offscreen container
    const container = document.createElement('div');
    container.style.cssText = 'position:absolute;left:-9999px;';
    document.body.appendChild(container);

    // 3. Render visualization
    const instance = new VisualizationLib({ container });
    instance.render(data);

    // 4. Export to Data URL
    const dataUrl = await instance.toDataURL({ type: 'svg', embedResources: true });

    // 5. Cleanup
    instance.destroy();
    document.body.removeChild(container);

    // 6. Generate Markdown image
    const markdownImage = `![Chart](${dataUrl})`;

    // 7. Update message via API
    const token = localStorage.getItem("token");
    await fetch(`/api/v1/chats/${chatId}/messages/${messageId}/event`, {
        method: "POST",
        headers: {
            "Content-Type": "application/json",
            "Authorization": `Bearer ${token}`
        },
        body: JSON.stringify({
            type: "chat:message",
            data: { content: originalContent + "\n\n" + markdownImage }
        })
    });
})();

Benefits

  • Pure Markdown Output: Standard Markdown image syntax, no HTML code blocks
  • Self-Contained: Images embedded as Base64 Data URL, no external dependencies
  • Persistent: Via API write-back, images remain after page reload
  • Cross-Platform: Works on any client supporting Markdown images

HTML Injection vs JS Render to Markdown

Feature HTML Injection JS Render + Markdown
Output Format HTML code block Markdown image
Interactivity ✅ Buttons, animations ❌ Static image
External Deps Requires JS libraries None (self-contained)
Persistence Depends on browser ✅ Permanent
File Export Needs special handling ✅ Direct export
Use Case Interactive content Infographics, chart snapshots

Reference Implementations

  • plugins/actions/infographic/infographic.py - Production-ready implementation using AntV + Data URL

5. Best Practices & Design Principles

5.1 Naming & Positioning

  • Short & Punchy: e.g., "FlashCard", "DeepRead". Avoid generic terms like "Text Analysis Assistant"
  • Complementary: Don't reinvent the wheel; clarify what specific problem your plugin solves

5.2 User Experience (UX)

  • Timely Feedback: Send a notification ("Generating...") before time-consuming operations
  • Visual Appeal: When Action outputs HTML, use modern CSS (rounded corners, shadows, gradients)
  • Smart Guidance: If text is too short, prompt the user: "Suggest entering more content for better results"

5.3 Error Handling

Never fail silently

Always catch exceptions and inform the user via __event_emitter__.

try:
    # Business logic
    pass
except Exception as e:
    await __event_emitter__({
        "type": "notification",
        "data": {"type": "error", "content": f"Processing failed: {str(e)}"}
    })

6. Troubleshooting

HTML not showing?

Ensure it's wrapped in a ```html ... ``` code block.

Database error?

Check if you called synchronous DB methods directly in an async function; use asyncio.to_thread.

Parameters not working?

Check if Valves are defined correctly and if they are being overridden by UserValves.

Plugin not loading?
  • Check for syntax errors in the Python file
  • Verify the metadata docstring is correctly formatted
  • Check OpenWebUI logs for error messages

Additional Resources